Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers
نویسنده
چکیده
Two fundamental characteristics of the low-Reynolds-number cylinder wake, which have involved considerable debate, are first the existence of discontinuities in the Strouhal-Reynolds number relationship, and secondly the phenomenon of oblique vortex shedding. The present paper shows that both of these characteristics of the wake are directly related to each other, and that both are influenced by the boundary conditions at the ends of the cylinder, even for spans of hundreds of diameters in length. It is found that a Strouhal discontinuity exists, which is not due to any of the previously proposed mechanisms, but instead is caused by a transition from one oblique shedding mode to another oblique mode. This transition is explained by a change from one mode where the central flow over the span matches the end boundary conditions to one where the central flow is unable to match the end conditions. In the latter case, quasi-periodic spectra of the velocity fluctuations appear; these are due to the presence of span wise cells of different frequency. During periods when vortices in neighbouring cells move out of phase with each other, 'vortex dislocations' are observed, and are associated with rather complex vortex linking between the cells. However, by manipulating the end boundary conditions, parallel shedding can be induced, which then results in a completely continuous Strouhal curve. It is also universal in the sense that the oblique-shedding Strouhal data (S11) can be collapsed onto the parallel-shedding Strouhal curve (S0) by the transformation, S0 = S 11 jcos (), where () is the angle of oblique shedding. Close agreement between measurements in two distinctly different facilities confirms the continuous and universal nature of this Strouhal curve. It is believed that the case of parallel shedding represents truly two-dimensional shedding, and a comparison of Strouhal frequency data is made with several two-dimensional numerical simulations, yielding a large disparity which is not clearly understood. The oblique and parallel modes of vortex shedding are both intrinsic to the flow over a cylinder, and are simply solutions to different problems, because the boundary conditions are different in each case.
منابع مشابه
Experimental investigation for wake of the circular cylinder by attaching different number of tripping wires
An experimental study is conducted on flow past a circular cylinder fitted with some tripping wires on its surface. The work investigates the dependency of the critical wire locations on the wire size and Reynolds numbers, and examines the wake and vortex shedding characteristics in an effort to advance the understanding of the critical wire effects beyond the existing literature. The primary a...
متن کاملSimulation of Premixed Combustion Flow around Circular Cylinder using Hybrid Random Vortex
This research describes the unsteady two-dimensional reacting flows around a circular cylinder. The numerical solution combines the random vortex method for incompressible two-dimensional viscous fluid flow with a Simple Line Interface Calculation (SLIC) algorithm for the propagation of flame interface. To simplify the governing equations, two fundamental assumptions namely Low Mach Number and ...
متن کاملThermal Field Around a Circular Cylinder with Periodic Vortex Shedding
A numerical study is carried out to investigate the laminar forced convection heat transfer from a circular cylinder. The fluid is assumed to be incompressible, the Reynolds number ranged from 0.1 to 1000, and the Prandtl number was equal to 0.7. The range of study includes heat transfer in creeping flow (Re40). The equations were discretized by a control-volume-based finite difference techniqu...
متن کاملAnalysis of Flow Pattern with Low Reynolds Number around Different Shapes of Bridge Piers, and Determination of Hydrodynamic Forces, using Open Foam Software
In many cases, a set of obstacles, such as bridge piers and abutments, are located in the river waterway. Bridge piers disrupt river’s normal flow, and the created turbulence and disturbance causes diversion of flow lines and creates rotational flow. Geometric shape and position of the piers with respect to flow direction and also number of piers and their spacing are effective on changing the ...
متن کاملDirect Numerical Simulation of the Wake Flow Behind a Cylinder Using Random Vortex Method in Medium to High Reynolds Numbers
Direct numerical simulation of turbulent flow behind a cylinder, wake flow, using the random vortex method for an incompressible fluid in two dimensions is presented. In the random vortex method, the primary variable is vorticity of the flow field. After generation on the cylinder wall, it is followed in two fractional time step in a Lagrangian system of coordinates, namely convection and diffu...
متن کامل